Math Virtual Learning

Grade 8

Solving Linear Systems: Elimination May 22, 2020

> Math 8
> Lesson: May 22, 2020
> Objective/Learning Target:
> I can solve linear systems by elimination.

Warm-Up:

State whether each system has one solution (state the point of intersection), no solution, or infinitely many solutions.

Review: Number of Solutions

Video:

Take notes on a piece of paper as you watch this video.

Systems of Equations

$$
\begin{array}{ll}
2 x-y=3 & 3 x+4 y=15 \\
3 x+y=7 & 2 x+3 y=11 \\
\frac{1}{3} x-\frac{1}{2} y=-2 & 2 x-y+3 z=15 \\
\frac{1}{6} x+\frac{1}{4} y=3 & 4 x-3 y-4 z=11 \\
\hline
\end{array}
$$

Elimination Method

Steps for Using Elimination Method

- Arrange the equations with like terms in columns.
- Analyze the coefficients of x or y. Multiply one or both equations by an appropriate number to obtain new coefficients that are opposite.
- Add the equations in a column and solve for the remaining variable.
- Substitute the value into either orginal equation and solve.
- Check the solution.

How To: Solve a System of Equations using Elimination

$$
\begin{array}{r}
x+y=10 \\
x-y=14
\end{array}
$$

(4) $12+y=10$
$-12=-12$
y $=-2$
(1) You want one set of coefficients to be opposites. Notice that y and -y are already opposites.
(2) Add the two equations.

This has been done in orange and the result is $2 x=$ 24.
(3) Solve for x.

Divide both sides by two and you will get $\mathbf{x}=12$.
(4) Solve for y. Substitute the value for x into one of the original equations and solve for y.
(5) Write your answer as an ordered pair.

You can check that your solution is correct by plugging it into both equations. You must plug in the x and y values.

Example 1: Elimination with Opposite Coefficients

$4 x+3 y=5$
$2 x-3 y=7$
$4 x+3 y=5$
$+2 x-3 y=7$
$\frac{6 x}{6}=\frac{12}{6}$
$x=2$
$4(2)+3 y=5$
$8+3 y=5$
$-8=-8$

$$
\frac{3 y}{3}=\frac{-3}{3}
$$

I step 1: You want one set of coefficients to be I opposites. This problem already has opposites
$1(+3 y$ and $-3 y$). Add like terms
Step 2: Solve for x
Step 3: Find the value of y. Substitute $x=2$ back into an original equation and solve.

Step 4: Write your answer as an ordered pair. Solution to the system is: $(2,-1)$

$$
y=-1
$$

How to: Elimination Without Opposite Coefficients

Example 2: Elimination without Opposite Coefficients and No Solution

$$
\begin{aligned}
3 x+12 y & =-36 \\
x+4 y & =-6
\end{aligned}
$$

Step 1: Notice that this system does not have l coefficients that are opposites. However, we can

$$
-3(x+4 y=-6)
$$ | multiply the entire 2nd equation by -3 to get opposite

$$
-3 x-12 y=18
$$ coefficients. Our new equation is $-3 x-12 y=18$

Step 2:Line up the two equations and add the columns.

$$
-3 x-12 y=18
$$

\|

$$
0+0=-18
$$

I
Step 3: Notice that we end up with a false statement. When you get an untrue statement such as $0=-18$ there is no value of x that will work in the problem.

Practice 1:

Use elimination to solve and find the solution(s) to each of the systems.

$$
\text { 1. } \begin{array}{r}
3 x+4 y=7 \\
3 x+4 y=9
\end{array}
$$

2. $-2 x+y=6$

$$
2 x+3 y=10
$$

3. $\begin{aligned} 3 x+4 y & =40 \\ x+4 y & =24\end{aligned}$
4. $9 x-3 y=63$
$3 x-y=21$

Practice 1:
 Answer Key

1. No solution
2. $(-1,4)$
3. $(8,4)$

Additional Resources:

Solving Systems with Elimination - Lesson and practice
Solving Systems with Elimination - Practice problems

Online Practice

